Implicit Differentiation

$x^{3}+y^{3}-9 x y=0$
$r=\frac{9 \sin (\theta) \cos (\theta)}{\sin ^{3}(\theta)+\cos ^{3}(\theta)}$
$x=\frac{9 T}{1+T^{3}}$
$y=\frac{9 T^{2}}{1+T^{3}}$

-The graph above has a well-defined slope at nearly every point because it is the union of $y=f_{1}(x), y=f_{2}(x), y=f_{3}(x)$ which are differentiable except at 0 and A.
-We need new techniques to solve for the slopes.
-To do this we need to
-Differentiate both sides of the equation with respect to x.
-Solve for $\frac{d y}{d x}$ in terms of x and y together!
-The process we use to find $\frac{d y}{d x}$ is called implicit differentiation because we don't know $y=f_{1}(x), y=f_{2}(x), y=f_{3}(x)$

Example

Find $\frac{d y}{d x}$ if $y^{2}=x$
-To solve, differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
$y^{2}=x$
$2 y \frac{d y}{d x}=1 \quad \frac{d}{d x}\left(y^{2}\right)=\frac{d}{d y}\left(y^{2}\right) \cdot \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{1}{2 y}$
-This is helpful in this case.

$$
\begin{aligned}
& y^{2}=x \\
& y=\sqrt{x}
\end{aligned}
$$

-This graph has 2 slopes for $x=4$ one at $(4,2)$ and (4,-2).
-Here our derivative is in terms of y so we can use y_{1} and y_{2} to find BOTH derivatives.

$$
\frac{1}{2 y_{1}}=\frac{1}{4} \quad \frac{1}{2 y_{2}}=-\frac{1}{4}
$$

Example-Finding Slope of a Circle

Find the slope of the circle $x^{2}+y^{2}=25$ at $(3,-4)$
-To graph this we would need to solve for y.

$$
y_{1}=\sqrt{25-x^{2}} \quad y_{2}=-\sqrt{25-x^{2}}
$$

-Since $(3,-4)$ is on y_{2} we could calculate explicitly

$$
\begin{aligned}
& \frac{d y_{2}}{d x}=-\left(25-x^{2}\right)^{1 / 2}=\frac{-1}{\sqrt{25-x^{2}}}(2 x) \\
& =\left.\frac{-2 x}{\sqrt{25-x^{2}}}\right|_{x=3}=\frac{-6}{2 \sqrt{25-9}}=\frac{3}{4}
\end{aligned}
$$

-This can be done even easier using implicit differentiation and will work on the entire circle.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25) \\
& 2 x+2 y\left(\frac{d y}{d x}\right)=0 \\
& \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

At $(3,-4)$

$$
=\frac{-3}{-4}=\frac{3}{4}
$$

Lenses, Tangents, and Normal Lines

Example

-Find the tangent and normal to the ellipse $x^{2}-x y+y^{2}=7$ at $(-1,2)$.

SOLUTION:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(7) \\
& 2 x-\left(x \frac{d y}{d x}+y(1)\right)+2 y \frac{d y}{d x}=0 \quad \text { Treat } x y \text { as a product } \\
& (2 y-x) \frac{d y}{d x}=y-2 x \\
& \frac{d y}{d x}=\frac{y-2 x}{2 y-x}
\end{aligned}
$$

Evaluate at $x=-1, y=2$

$$
\frac{d y}{d x}=\frac{2-2(-1)}{2(2)-(-1)}=\frac{4}{5}
$$

Tangent at $x=-1, y=2$

$$
\begin{aligned}
& y-2=\frac{4}{5}(x+1) \\
& y-2=\frac{4}{5} x+\frac{4}{5} \\
& y=\frac{4}{5} x+\frac{14}{5}
\end{aligned}
$$

Normal at $x=-1, y=2$

$$
\begin{aligned}
& y-2=-\frac{5}{4}(x+1) \\
& y-2=-\frac{5}{4} x-\frac{5}{4} \\
& y=-\frac{5}{4} x+\frac{3}{4}
\end{aligned}
$$

Example

-Show the slope is defined everywhere on $2 y=x^{2}+\sin y$

$$
2 \frac{d y}{d x}=2 x+\cos y \frac{d y}{d x}
$$

$$
\begin{aligned}
& 2 \frac{d y}{d x}-\cos y \frac{d y}{d x}=2 x \\
& (2-\cos y) \frac{d y}{d x}=2 x \\
& \frac{d y}{d x}=\frac{2 x}{2-\cos y}
\end{aligned}
$$

Example-Second Derivative Implicitly

Find $\frac{d^{2} y}{d x^{2}}$ if $2 x^{3}-3 y^{2}=0$.

$$
\begin{aligned}
& \text { Note: } y^{\prime}=\frac{d y}{d x} \\
& 6 x^{2}-6 y y^{\prime}=0 \\
& x^{2}-y y^{\prime}=0 \\
& y^{\prime}=\frac{x^{2}}{y}
\end{aligned}
$$

To find $y^{\prime \prime}$.

$$
y^{\prime \prime}=\frac{2 x y-x^{2} y^{\prime}}{y^{2}}=\frac{2 x}{y}-\frac{x^{2} y^{\prime}}{y^{2}}
$$

Don't forget we already solved $y^{\prime}=\frac{x^{2}}{y}$

$$
\begin{aligned}
& y^{\prime \prime}=\frac{2 x}{y}-\frac{x^{2}}{y^{2}}\left(\frac{x^{2}}{y}\right) \\
& =\frac{2 x}{y}-\frac{x^{4}}{y^{3}}
\end{aligned}
$$

